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Quasi-TEM Surface Impedance Approaches for the

Analysis of MIC and MMIC Transmission Lines,

Including Both Conductor and Substrate Losses
JOS6 Aguilera, Ricardo Marqu6s, and Manuel Homo, Member, IEEE

Abstract-The surface impedance approach is applied to the
quasi-TEM spectral domain analysis of MIC and MMIC lines
with lossy metallizations in both the weak skin effect and the
strong skin effect regimes. The use of the spectral domain tech-
nique makes it possible the analysis of lines with multilayer
isoianisotropic substrates, including semiconductor andJor mag-

netic Iayers. PC computer codes have been developed following

the proposed technique. Computation times within a few seconds

are achieved.

I. INTRODUCTION

T HE thickness of metallizations in MMIC circuits is about

ten times smaller than the usual metallization thickness in

hybrid MIC’S. In this case the well known incremental induc-

tance rule for conductor loss calculations may not be adequate.

In the analysis of MMIC transmission lines, the use of a quasi-

TEM approach is suggested because of the small dimensions of

these structures [1]. The advantages of the quasi-TEM spectral

domain techniques for the analysis of quasi-planar transmis-

sion lines are well known. The spectral domain approach

makes it possible to analyze general multistrip transmission

lines embedded in multilayered complex substrates within

reasonably short computation times. Dispersion due to the

dependence on frequency of the characteristic parameters of

the substrate and/or metallizations, can be aualysed by suitable

quasi-TEM approaches. Following this method, some of the

authors of the present paper have analysed the feasibility of the

spectral domain quasi-TEM technique in planar transmission

lines on lossy semiconductors and other complex multilayered

substrates [2], [3]. The effects of finite thickness in lossless

metallizations are analysed in [4] using an spectral domam

quasi-TEM technique. In reference [5] a quasi-TEM spectral

domain technique for the analysis of simple microstrip lines

with conductor losses is developed. The method in [5] is able

to deal with conductor strip thickness of the order of the skin

depth by using the surface impedance approach [6]-[9].

In this paper a two-plate quasi-TEM surface impedance

(quasi-TEM-SI) approach is presented for the analysis of

lines with lossy conductors. Following this approach com-

puter codes can be developed for the analysis of both con-

ductor and substrate losses in MIC and MMIC lines on

multilayer anisotropic substrates, including gyroelectric and

Manuscript received October 3, 1994; revised January 4, 1995. This work
was supported by CICYT, Spain (Proj. no. TIC91-101S).

The authors are with the Grnpo de Microondas, Dept. Electr6nica y
Eleetromagnetismo Universidad de Sevilla, 41012 Sevilla, Spain.

IEEE Log Number 9412041.

gyromagnetic materials. These codes have been implemented

on a personal computer (PC) and computation times of a few

seconds have been achieved.

II. QuAsI-TEM-SI APPROACH

A. Basic Assumptions

The structure under analysis is shown in Fig. l(a). It is a

multistrip transmission line embedded in a multilayer medium,

made of auisotropic dielectric aud/or magnetic materials, in-

cluding lossy as well as gyrotropic layers magnetized along

the direction of propagation (i.e. the direction of propagation

always coincides with a main axis of the permeability and

permittivity tensors). We also regard the possibility of having

strips made of two different conductors.

The quasi-TEM approach will remain valid outside the con-

ductors as long as the transverse components (z and y compo-

nents in Fig. l(a)) of the electric and magnetic fields are much

greater than their corresponding longitudinal components (.z

component). Nevertheless, since the longitudinal component of

the magnetic field must be negligible with respect to the trans-

verse components, the transverse components of all the ohmic

currents inside the metallizations must be also negligible with

respect to the longitudinal component. So, the validity of the

quasi-TEM approach outside the conductors implies that the

transverse components of the electric field inside the conduc-

tors must be much smaller than the longitudinal component [5].

Finally, we assume the validity of the good conductor

approach for the line conductors (m. >> L@, i.e. the diffllsion

equation is the equation that the fields inside the conductors

must satisfy. All these aproximations can be summarized as

follows:

1)

2)

Outside the conductors: The longitudinal field compo-

nents are negligible with respect to the transverse com-

ponents. The equation that the fields must satisfy i~$the

wave equation for the TEM field.

Inside the conductors: The longitudinal magnetic field

component is negligible with respect to the trasverse com-

ponents and the transverse electric field components are

negligible with respect to the longitudinal components.

B. Field Potentials and Basic Equations

We will suppose a quasi-TEM wave propagating along the

line in Fig. 1(a). The space-time dependence of the fields is

of the kind E = IZO(Z, y) exp(jwt – jT.z). According to the
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(a) (b)

Fig. 1. (a) Multistrip transmission line embedded in a multilayered medium, made of generat anisotropic dielectric and/or magnetic layers, including 10SSY,
as well as gyrotropic materiels. Each strip of the line can be made of a multilayer conducting media. (b) Approximately equivalent structure.

assumptions made above, the unique relevant components of

the magnetic field, in the entire cross section of the line, are

the transverse components. Therefore, they can be obtained

from a longitudinal potential vector A, in the usual way

Ilt,. = –[~]~laz x VtA. (1)

where [~]n is the transverse permeability tensor

(2)

The subscript t stands for transverse component and the

subscript n stands for each one of the different homogeneous

layers of the line. The electric field can be obtained in terms of

the scalar electric potential @and the vector magnetic potential

Azaz as usual

En = –Vt~ + jy~az – jwAzaz (3)

where T is the propagation constant along the line. Neverthe-

less, according to the basic assumptions made above, only

the electric transverse components are relevant outside the

conductors, and only the electric longitudinal components are

relevant inside the conductors. Therefore, (3) can be simplified

to

E,,~ = –~t~ outside the conductors (4)

and

Ez,i = j~~ – jwAz inside the conductors (5)

where Vi are the constant values of the electric potential over

the ith conductor of the line cross section. In (5) it has been

taken into account that the transverse electric field components

are negligible inside the conductors, and as a consequence of

this, that the electric potential is constant.

The differential equations for the electric and magnetic

potentials outside the conductors can be deduced from the

divergence equations for the transverse electric and magnetic

fields

“{[JNL.}= O outside the conductors (6)

where [e]~ is the transverse permitivity tensor for each layer

and where a transverse permitivity equivalent tensor has been

defined [2]

[w
[“”k = ~et([w]n) (7)

where the superscript t stands for the transpose matrix.

The differential equations for the relevant magnetic potential

components inside the conductors is deduced from (5) and the

equation for the longitudinal potential vector

{V? – jwLLioi}A. = –jpiciyx inside the conductors.

(8)

C. Two-Plate Su#ace Impedance Model

Equation (6) for the vector potential can be solved for the

structure of Fig. 1(a) with the appropriate boundq conditions

on the surfaces of the metallizations. Anyway we replace the

actual problem by an other approximately equivalent problem,

where each strip is substituted by two surface current plates at
the upper and the bottom strip interfaces (see Fig. l(b)), which

are related to the longitudinal electric fields at the interfaces

by means of a surface impedance matrix

(9)

where E$ (E;) is the electric field component at the upper

(bottom) strip interface, and the surface current J$(JS-) is

equal to the tangential magnetic field –fl~ (II=) at the upper

(bottom) strip interface. The calculus of the surface impedance

matrix will be discussed in Appendices A and B. By solving

(6) as explained in [2], one obtains a Green’s function in the
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spectral domain which relate A= and ~s, where-stands for

spectral domain

Az(kz, y) = G(kz; y, y’) . ~s(kz, y’) (lo)

k. being the spectral variable.

Equations (5) and (9) make it possible to write the following

expresion for the upper and bottom strip interfaces

‘3($4”II (11)

where 7 stands for the Fourier transform.

The method used for obtaining the Green’s function [~] has

been initializated with a resistive complex boundary condition

at the ground planes, in order to take into account the effects of

the finite conductivity of the ground plates. When anisotropic

media are present, this equation in the frame of the spectral

domain can be written as

~ = _jzml(2)&f) (9Az
z int %

(12)
w

y= O,H.W

where

‘+’ coth(%’d’13)‘m1(2)= (51(2)(71(2)

and

l(M)
&f) _ %,x

mt — K.
(14)

l(M)
Po – &kl(2)%,Y

and where n stands for the outward surface conductor direc-

tion, 61(2) is the skin depth, 01,(2) is the conductivity, tg, 1(z)

is the thickness of the ground plate, [~] = [LG.]– 1, kz is the

spectral variable, 1(2) stand for the bottom (upper) ground

plate and l(~) stand for the bottom (upper) layer of Fig. 1.

Equation (11) can be solved by using Galerkin method.

Once the surface current densities are obtained, the total cur-

rent of each strip can be calculated by integrating the surface

current densities along the strip Ij = fYf/2 (.l~j + J.~j) dx.

After some iterations in which the canonical excitations TW =

6,,3; j = I, 2,-.. N (N is the total number of strips) me used,

the total currents L over the conductors can be linearly rel~ted

with the excitations CYViby means of a complex matrix L,,j
as follows:

(15)

where the L~,~ matrix has dimensions of induction per unit

length. For conductors with finite conductivity, ~;,j is a

complex matrix, whose imaginary part can be identified with

the mutual per unit length resistance of the line, and its real

part with the per unit length inductance matrix of the line

(16)

The electrostatic problem for the determination of the com-

plex ~,,j matrix from (6) with constant potentials at the

conductors is solved by using the Galerkin method in the

spectral domain. This method is developed in [4] for structures

with thick strips. Two conducting plates are considered at

each strip, because this approximation is good enough for the

usual MIC and MMIC configurations [4]. The spectral Green’s

functions proposed in [2] are used to allow the presence of

lossy and/or gyrotropic layers.

Once the inductance and the capacitance matrices have

been calculated, the usual quasi-TEM expressions for the line

complex propagation constant and impedance are obtained.

D. Improvement of the Two-Plate Model

Although the two-plate model suffices in many cases, certain

lines having thick strips can not be properly approximated by

using this model. Therefore it should be desirable to have a

more accurate model for structures having high values of the

ratio between the strips thickness and the strips width. This

model has been successfully developed in [13] for lossless

conductors. However, a direct generalization of the N-layer

model proposed in [13] is not possible for 10SSYthick strips.

Nevertheless, it is still possible to take some advantage clf the

model proposed in [13] for lossless strips. In fact, it is expected

that the failure of the two-plate model for thick strips will be

mainly related to the computation of the external inductance

rather than to the computation of the internal inductance and

resistance. Starting from this idea, a procedure to estimate the

.,j of thick-strip lossy lines is going tocomplex inductance L

be proposed. First of all, the lossless thick-strip line complex

inductance L~~N is computed by using the N-1ayer model

proposed in [13]. Then, the lossless thick-strip line complex

inductance is computed again by using the two-plate model.

The obtained value ~~;~ is then subtracted from the two ILayers

lossy thick-sttip line complex inductance, ~,j, obtained by

means of the method described in this section. Finally, the

obtained incremental complex inductance matrix is added to

the iV-layer lossless complex inductance. The final expression

for the Nth degree of approximation is

(17)

The complex capacitance matrix C,,j is obtained by also

using the N-layer model of [13], and the line parameters

are computed by using the conventional expressions. This

method provides improved results, with a small increase in

the computation time.

III. NUMERICAL PROCEDUIW AND RESULTS

The Galerkin method in the spectral domain was used for

solving the integral equations for the charge density and the

longitudinal current density on the plates. For the longitudinal

current density a nonuniform linear piecewise aproxim,ation,

with triangular basis functions, [5] was used. The same basis

functions were used for the electrostatic problem. Notice that

the weighted Chebyshev polynomials [4] can not be used

in the magnetostatic problem [10]. Triangular basis functions

were also used in the electrostatic problem for completeness.

Typical CPU times in a 486/66 PC are about 5–10 sec. for a
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Fig. 2. Phase and attenuation constants for two coupled strips on a GaAs
substrate. w = 4 pm, s = 8 #m, h = 670 ~m, t~i = 0.05 #m, tAa =
(0.48-0.45) pm, e, = 13. (— ) Our two-plates model results, (---)
Theoretical results in [14]. (=) Experimental results in [14].

single microstrip (Figs. 3, 4, and 6) and 20–30 sec. for coupled

microstrip lines (Fig. 2) or for a coplanar waveguide (Fig. 5).

In Fig. 2 our results obtained by using the two-plate quasi-

TEM-SI approach are compared with those provided in [14]

for two coplanar strips on a GRAS substrate. The strips are

made of gold with a thin titanium layer of 0.05 #m to promote

adhesion with the substrate. Measured values of the metalliza-

tion thickness we between 0.53 and 0.55 flm [14]. Thus the

gold layer thickness varies between 0.48 and 0.50 pm. In the

figure the computed values of both the attenuation and the

phase constants are plotted. Both experimental and theoretical

values given in [ 14] are also plotted. Good agreement with

the experimental results is observed. Numerical computations

show that the influence of the titanium layer thickness, with

the poorest conductivity, is negligible in this frequency range.

Nevertheless the influence of the gold layer conductivity is

critical at the analyzed frequency and dimensions.

A comparison between the results obtained by using differ-

ent single- and two-plate quasi-TEM-SI approaches is shown

in Fig. 3 for a microstrip line on anisotropic sapphire substrate.

The main features of the single-plate quasi-TEM-SI approach

are reported in [5]. Two different expressions for the surface

impedance of the single-plate quasi-TEM-SI approach have

been used. The first one is that reported in [8]. The second

one is an improved expression, which takes into account

the presence of a non-zero tangential magnetic field on the

upper strip interface (see Appendix B). A good agreement

is observed between the two-plate results for the attenuation

constant and the single-plate results when (20) and (22) are

used. However, the results for the phase constant are different

from the two-plates results for any single-plate S1 model.

These results show that a good single-plate S1 model can give

accurate results for the attenuation constant, provided that a

good estimation is made for the ~+ /H– ratio. Nevertheless,

good approximations for the phase constant can be only

achieved by using a two-plates model.
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Fig. 3. Phase and attenuation constants for a microstrip line on sapphire
substrate. w = 40 pm, h = 200 pm, C;z = 9.4, ●#y = 11.6. (—)
Two-plates results. (–––) Single–late results using and (20) and (21). (– . –).

Single plate results [8].
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Fig. 4. Attenuation and effective dielectric constauts for a snicrostnp line in
a layered lossy substrate. w = 30 pm, h = 200 pm, t = 6 pm, Cr,l = 12.9, tg

81 = 3 x 10–4, e,,~ = 3.4, tg f5~ = 0.05, a = 1.77 x 107 (flm)-l. (—)
Two-plates results. (–––) Single-plate results. (– –) Theoretical results in

[15]. (*) Experimental results in [16].

Fig. 4 shows a comparison between our results for a mi-

crostrip line and those provided in [15]. The technique used in

[15] is full-wave mode matching. In Fig. 4 the experimental

data obtained in [16] are also shown. A good agreement is

observed for the attenuation constant for both the two- and

the single-plate models (using (20) and (21 )). Once again

good results for the effective dielectric constant are only

provided by the two-plates model. The disagreement between

our results and those of [15] for the highest values of the

h/A. ratio is believed to be due to the failure of the quasi-

TEM approach owing to full-wave effects. This disagreement

should be present even in the absence of conductor losses.

The two main limitations of the approach developed here

are the presence of full-wave effects in the lossless problem,
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Fig. 5. Attenuation and effective dielectric constants for a coplanar wave-

guide on a AsGa substrate. h = 200 fire, s = 5 pm, w = 40 pm, C? = 12.9.

(— ) Phase constant results using a two-plates model and an N = 3, 5 and

10improvement (17).(x ●)Theoretical results in [15].

and the presence of relatively high values for the metalliza-

tion thickness. This latter limitation is expected to be more

important in coplanar lines with high lateral coupling between

the strips. In Fig. 5 our results for a coplanar waveguide are

compared with those obtained in [15] by using a full-wave

mode matching approach. Good agreement is observed for

the attenuation constant for all the computed strip thicknesses.

The results for the effective dielectric constant show a good

agreement until values of the t/s ratio of about t/s = 0.25.,

For higher values of this ratio, our two-plates model results

disagree. By using the improvement of the model given in (17),

a much better convergence is achieved, although the effective

dielectric constant is systematically overestimated.

One of the main advantages of the spectral domain tech-

nique is the ability to deal with multilayered and/or anisotropic

substrates. In Fig. 6 the dispersion characteristics of a MIS

line with a magnetic semiconductor layer are shown. At low

frequencies the dispersion characteristics of the structure with

ideal conductors can be obtained from a quasi-TEM approach

[2], [3]. When conductor losses are also present, the proposed

approach can be used to take into account both conductor and

substrate magnetic and ohmic losses in a unified way.

IV. CONCLUSION

The surface impedance approach has been applied to the

spectral domain quasi-TEM analysis of quasi-planar MIC and

MMIC lines on dielectric, semiconductor and/or magnetic

multilayered substrates having transverse anisotropy (i.e. the

direction of propagation coincides with a main axis of the

permittivity and permeability tensors). The proposed procedure
takes advantage of the simplicity of both the qutisi-TEM

approach and the spectral domain analysis. The proposed

method of analysis remains valid in both the weak and the

strong skin effect frequency ranges.

Two surface impedance models have been used, a single-

plate model [5] and a two-plates model. The single-plate model

has shown to be useful for attenuation constant computations,

.00

.10

.01

f (GHz)

Fig. 6. Slow wave factor (—-) aud att~nuation constant (---) for a
rrsicrostrip line of gold (a = 4.094 x 10’ (!Jm)– 1) on a ferromagnetic

semiconductor. Itl = 100 pm, h2 = 1 pm, w = 200 pm, er,l = Cr,z =

15.5. Layer 1 of saturated fernmagnetic semiconductor with al ❑ 0.005

(Clmm)-l, HO,l = 2500 Oe, ZMYo,l = 75 Oe.(*) Results in [2] with a

lossless t = O strip.

provided that a good estimation of the ratio between the

tangential magnetic field above and below the strips is made.

The two-plates model also provides good results for the phase

constant when thick strips are present. Therefore the two-

plates model is useful in the analysis of MIC and MMIC lines

with relatively thick strips. Moreover, no additional hypothesis

on the magnetic field values at the neighbourhood of the

strips must be made when aplying the two-plates model. This

fact makes the two-plates model very useful in the analy-

sis of multiconductor lines, in which a previous estimation

of the magnetic field behavior near the strips is difficult

or impossible. The use of asymptotic tails for the Green’s

function and other analytical preprocessing [13], makes it

possible to develop computer codes capable of solving a great

variety of configurations within short computing times. ‘Typical

computing times are within a few seconds in a 486 PC.

APPENDIX A

The surface impedance matrix appearing in (9) can be

obtained solving the diffusion equation for the longitudinal

component of the electric field inside the conductor. We

assume that the conductor width is larger than conductor

thickness, at least large enough to consider Ml: /dz2 neg-

ligible with respect to r9E~/8y2. Under that assumption, the’

expression for the impedance matrix can be found in [11], [9]

and [12]

()l+jt
ZI,I = Z2,2 = .zm ctgh ~ (18)

ZI,2= Z2,1= Zm
1

l+j “
(19)

sinh( —t)
6

For strips made of several conducting layers, similar expres-

sions can be obtained by following the same procedure. This

makes possible to take into account the adhesive conducting

layer (Ti) used in the technology.
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APPENDIX B

The surface impedance used to improve (11) in [5] is

(l+Rm
Z=zm —

()

l+jt

I–Rm
ctgh —

6

Rm,

( ))

l+jt

–~
ctgh —

26
(20)

where Rm = H$ /H; is the ratio between the tangential

magnetic fields on the upper and lower strip interfaces.

For an open microstrip line this ratio will be approximated

by

%=-[’+:”-1(@%Jl
“[+g-’( ‘2h+’)w)1-’’21)(2h + t)’ - (w/2)’

where h is the height of the substrate and w, t are the strip

width and thickness respectively. Equation (21 ) is obtained

by solving the magnetostatic problem of a uniform surface

current layer of width w located at a distance h of an infinite

ground plane. The HJ/H; ratio in (21) is the ratio between

the magnetostatic field at a distance t above the surface current

layer, and the magnetostatic field just below the surface current

layer. Notice that the surface impedance definition used in [8]

is obtained from (20) and (21) by making H: = O, i.e. by

neglecting the magnetic field at the upper strip interface.
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