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QQuasi-TEM Surface Impedance Approaches for the
Analysis of MIC and MMIC Transmission Lines,
Including Both Conductor and Substrate Losses
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Abstract—The surface impedance approach is applied to the
quasi-TEM spectral domain analysis of MIC and MMIC lines
with lossy metallizations in both the weak skin effect and the
strong skin effect regimes. The use of the spectral domain tech-
nique makes it possible the analysis of lines with multilayer
iso/anisotropic substrates, including semiconductor and/or mag-
netic layers. PC computer codes have been developed following
the proposed technique. Computation times within a few seconds
are achieved.

I. INTRODUCTION

HE thickness of metallizations in MMIC circuits is about

ten times smaller than the usual metallization thickness in
hybrid MIC’s. In this case the well known incremental induc-
tance rule for conductor loss calculations may not be adequate.
In the analysis of MMIC transmission lines, the use of a quasi-
TEM approach is suggested because of the small dimensions of
these structures [1]. The advantages of the quasi-TEM spectral
domain techniques for the analysis of quasi-planar transmis-
sion lines are well known. The spectral domain approach
makes it possible to analyze general multistrip transmission
lines embedded in multilayered complex substrates within
reasonably short computation times. Dispersion due to the
dependence on frequency of the characteristic parameters of
the substrate and/or metallizations, can be analysed by suitable
quasi-TEM approaches. Following this method, some of the
authors of the present paper have analysed the feasibility of the
spectral domain quasi-TEM technique in planar transmision
lines on lossy semiconductors and other complex multilayered
substrates [2], [3]. The effects of finite thickness in lossless
metallizations are analysed in [4] using an spectral domain
quasi-TEM technique. In reference [5] a quasi-TEM spectral
domain technique for the analysis of simple microstrip lines
with conductor losses is developed. The method in [5] is able
to deal with conductor strip thickness of the order of the skin
depth by using the surface impedance approach [6]-[9].

In this paper a two-plate quasi-TEM surface impedance
(quasi-TEM-SI) approach is presented for the analysis of
lines with lossy conductors. Following this approach com-
puter codes can be developed for the analysis of both con-
ductor and substrate losses in MIC and MMIC lines on
multilayer anisotropic substrates, including gyroelectric and
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gyromagnetic materials. These codes have been implemented
on a personal computer (PC) and computation times of a few
seconds have been achieved.

II. QUASI-TEM-SI APPROACH

A. Basic Assumptions

The structure under analysis is shown in Fig. 1(a). It is a
multistrip transmission line embedded in a multilayer medium,
made of anisotropic dielectric and/or magnetic materials, in-
cluding lossy as well as gyrotropic layers magnetized along
the direction of propagation (i.e. the direction of propagation
always coincides with a main axis of the permeability and
permittivity tensors). We also regard the possibility of having
strips made of two different conductors.

The quasi-TEM approach will remain valid outside the con-
ductors as long as the transverse components (z and y compo-
nents in Fig. 1(a)) of the electric and magnetic fields are much
greater than their corresponding longitudinal components (z
component). Nevertheless, since the longitudinal component of
the magnetic field must be negligible with respect to the trans-
verse components, the transverse components of all the ochmic
currents inside the metallizations must be also negligible with
respect to the longitudinal component. So, the validity of the
quasi-TEM approach outside the conductors implies that the
transverse components of the electric field inside the conduc-
tors must be much smaller than the longitudinal component [5].

Finally, we assume the validity of the good conductor
approach for the line conductors (o, >> we,), i.e. the diffusion
equation is the equation that the fields inside the conductors
must satisfy. All these aproximations can be summarized as
follows:

1) Outside the conductors: The longitudinal field compo-
nents are negligible with respect to the transverse com-
ponents. The equation that the fields must satisfy is the
wave equation for the TEM field.

2) Inside the conductors: The longitudinal magnetic field
component is negligible with respect to the trasverse com-
ponents and the transverse electric field components are
negligible with respect to the longitudinal components.

B. Field Potentials and Basic Equations

We will suppose a quasi-TEM wave propagating along the
line in Fig. 1(a). The space-time dependence of the fields is
of the kind E = Ey(z,y) exp(jwt — jyz). According to the
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(a) Multistrip transmission line embedded in a multilayered medium, made of general anisotropic dielectric and/or magnetic layers, including lossy,

as well as gyrotropic materiels. Each strip of the line can be made of a multilayer conducting media. (b) Approximately equivalent structure.

assumptions made above, the unique relevant components of
the magnetic field, in the entire cross section of the line, are
the transverse components. Therefore, they can be obtained
from a longitudinal potential vector A, in the usual way

Ht,n - —-[[1/];10,2 X V1&142 (1)

where [p], is the transverse permeability tensor
(A e
n T

The subscript ¢ stands for transverse component and the
subscript » stands for each one of the different homogeneous
layers of the line. The electric field can be obtained in terms of
the scalar electric potential ¢ and the vector magnetic potential
A.a, as usual

En = _‘Vt()b + j’Y(/)(lz - jWAza'z (3)

where + is the propagation constant along the line. Neverthe-
less, according to the basic assumptions made above, only
the electric transverse components are relevant outside the
conductors, and only the electric longitudinal components are
relevant inside the conductors. Therefore, (3) can be simplified
to

E,. =-V.$ outside the conductors @
and

E,;=3jvVi — jwA, inside the conductors ®)]
where V; are the constant values of the electric potential over
the ith conductor of the line cross section. In (5) it has been
taken into account that the transverse electric field components
are negligible inside the conductors, and as a consequence of
this, that the electric potential is constant.

The differential equations for the electric and magnetic
potentials outside the conductors can be deduced from the

divergence equations for the transverse electric and magnetic
fields )

[E]nvt¢ _ :
Vt{[eeq_]nvt A= 0 outside the conductors (6)
where [¢],, is the transverse permitivity tensor for each layer
and where a transverse permitivity equivalent tensor has been
defined [2]

g _ 0w
= Fa 0

where the superscript ¢ stands for the transpose matrix.

The differential equations for the relevant magnetic potential
components inside the conductors is deduced from (5) and the
equation for the longitudinal potential vector

{Vf — jwpioi} A, = —juoyV;  inside the conductors.
(3

C. Two-Plate Surface Impedance Model

Equation (6) for the vector potential can be solved for the
structure of Fig. 1(a) with the appropriate boundary conditions
on the surfaces of the metallizations. Anyway we replace the
actual problem by an other aproximately equivalent problem,
where each strip is substituted by two surface current plates at
the upper and the bottom strip interfaces (see Fig. 1(b)), which
are related to the longitudinal electric fields at the interfaces
by means of a surface impedance matrix

(Ej) _ (Zl,l Zl,Z) B (J.j_) (9)
Ez_ - Z271 Zz,z J s

where E}(E]) is the electric field component at the upper
(bottom) strip interface, and the surface current J;™(J;) is
equal to the tangential magnetic field —H_ (H ) at the upper
(bottom) strip interface. The calculus of the surface impedance
matrix will be discussed in Appendices A and B. By solving

(6) as explained in [2], one obtains a Green’s function in the
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spectral domain which relate A, and js, where ~ stands for
spectral domain

Az(kw:y) = é(kw;yayl) . js(kwuy,)

k; being the spectral variable.
Equations (5) and (9) make it possible to write the following
expresion for the upper and bottom strip interfaces

[{GIJ Glﬂ] _;Z[ZLl ZLZ]}_ T¥
G211 Gap| wl|Z21 Z22 J;

(B |

where F stands for the Fourier transform.

The method used for obtaining the Green’s function [2] has
been initializated with a resistive complex boundary condition
at the ground planes, in order to take into account the effects of
the finite conductivity of the ground plates. When anisotropic
media are present, this equation in the frame of the spectral
domain can be written as

(10)

an

t ]Zm azziz
A, =— w1<2>e;§y> = (12)
y=0,Hr
where
+37 (1+j )
Lom = coth t (13
RUTATRS biy & ® )
and
1(M)
i = — (14)

K,

,U«O‘— TZmuz)ml:,(éM)
and where n stands for the outward surface conductor direc-
tion, 6;(oy is the skin depth, oy (o) is the conductivity, ¢, 1(2)
is the thickness of the ground plate, [7] = [ur]71, ks is the
spectral variable, 1(2) stand for the bottom (upper) ground
plate and 1(M) stand for the bottom (upper) layer of Fig. 1.

Equation (11) can be solved by using Galerkin method.
Once the surface current densities are obtained, the total cur-
rent of each strip can be calculated by integrating the surface
current densities along the strip I; = fi"u/) 32((];’ s+ j) dz.
After some iterations in which the canonical excitations yV; =
8,3:5 =1,2,--- N (N is the total number of strips) are used,
the total currents I, over the conductors can be linearly related
with the excitations vV; by means of a complex matrix ﬁz, 3
as follows:
s _ Vi

ij =
Wl ly,—ov jzi

15)

where the IA/i,] matrix has dimensions of induction per unit
length. For conductors with finite conductivity, f)i’j is a
complex matrix, whose imaginary part can be identified with
the mutual per unit length resistance of the line, and its real
part with the per unit length inductance matrix of the line

~

L, =L; - 2R (16)

The electrostatic problem for the determination of the com-
plex C,; matrix from (6) with constant potentials at the
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conductors is solved by using the Galerkin method in the
spectral domain. This method is developed in [4] for structures
with thick strips. Two conducting plates are considered at
each strip, because this approximation is good enough for the
usual MIC and MMIC configurations [4]. The spectral Green’s
functions proposed in [2] are used to allow the presence of
lossy and/or gyrotropic layers.

Once the inductance and the capacitance matrices have
been calculated, the usual quasi-TEM expressions for the line
complex propagation constant and impedance are obtained.

D. Improvement of the Two-Plate Model

Although the two-plate model suffices in many cases, certain
lines having thick strips can not be properly approximated by
using this model. Therefore it should be desirable to have a
more accurate model for structures having high values of the
ratio between the strips thickness and the strips width. This
model has been successfully developed in [13] for lossless
conductors. However, a direct generalization of the N-layer
model proposed in [13] is not possible for lossy thick strips.
Nevertheless, it is still possible to take some advantage of the
model proposed in [13] for lossless strips. In fact, it is expected
that the failure of the two-plate model for thick strips will be
mainly related to the computation of the external inductance
rather than to the computation of the internal inductance and
resistance. Starting from this idea, a procedure to estimate the
complex inductance IA/i’ , of thick-strip lossy lines is going to
be proposed. First of all, the lossless thick-strip line complex
inductance IAL?:JN is computed by using the N-layer model
proposed in [13]. Then, the lossless thick-strip line complex
inductance is computed again by using the two-plate model.
The obtained value ﬁ?’f is then subtracted from the two layers
lossy thick-strip line complex inductance, I:f ,» obtained by
means of the method described in this section. Finally, the
obtained incremental complex inductance matrix is added to
the N-layer lossless complex inductance. The final expression
for the Nth degree of approximation is

LN, =LY + (L2, - L)) 17)

The complex capacitance matrix C’m is obtained by also
using the N-layer model of [13], and the line parameters
are computed by using the conventional expressions. This
method provides improved results, with a small increase in
the computation time.

IIT. NUMERICAL PROCEDURE AND RESULTS

The Galerkin method in the spectral domain was used for
solving the integral equations for the charge density and the
longitudinal current density on the plates. For the longitudinal
current density a nonuniform linear piecewise aproximation,
with triangular basis functions, [5] was used. The same basis
functions were used for the electrostatic problem. Notice that
the weighted Chebyshev polynomials [4] can not be used
in the magnetostatic problem [10]. Triangular basis functions
were also used in the electrostatic problem for completeness.
Typical CPU times in a 486/66 PC are about 5-10 sec. for a
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Fig. 2. Phase and attenuation constants for two coupled strips on a GaAs
substrate. w = 4 ym, s = 8 pum, h = 670 pum, tp; = 0.05 pm, t4, =
(0.48-0.45) pm, e = 13. (——) Our two-plates model results, (——-)
Theoretical results in [14]. () Experimental results in [14].

single microstrip (Figs. 3, 4, and 6) and 20-30 sec. for coupled
microstrip lines (Fig. 2) or for a coplanar waveguide (Fig. 5).

In Fig. 2 our results obtained by using the two-plate quasi-
TEM-SI approach are compared with those provided in [14]
for two coplanar strips on a GaAs substrate. The strips are
made of gold with a thin titanium layer of 0.05 pm to promote
adhesion with the substrate. Measured values of the metalliza-
tion thickness are between 0.53 and 0.55 pym [14]. Thus the
gold layer thickness varies between 0.48 and 0.50 pum. In the
figure the computed values of both the attenuation and the
phase constants are plotted. Both experimental and theoretical
values given in [14] are also plotted. Good agreement with
the experimental results is observed. Numerical computations
show that the influence of the titanium layer thickness, with
the poorest conductivity, is negligible in this frequency range.
Nevertheless the influence of the gold layer conductivity is
critical at the analyzed frequency and dimensions.

A comparison between the results obtained by using differ-
ent single- and two-plate quasi-TEM-SI approaches is shown
in Fig. 3 for a microstrip line on anisotropic sapphire substrate.
The main features of the single-plate quasi-TEM-SI approach
are reported in [5]. Two different expressions for the surface
impedance of the single-plate quasi-TEM-SI approach have
been used. The first one is that reported in [8]. The second
one is an improved expression, which takes into account
the presence of a non-zero tangential magnetic field on the
upper strip interface (see Appendix B). A good agreement
is observed between the two-plate results for the attenuation
constant and the single-plate results when (20) and (22) are
used. However, the results for the phase constant are different
from the two-plates results for any single-plate SI model.
These results show that a good single-plate ST model can give
accurate results for the attenuation constant, provided that a
good estimation is made for the H T /H™ ratio. Nevertheless,
good approximations for the phase constant can be only
achieved by using a two-plates model.
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Fig. 3. Phase and attenuation constants for a microstrip line on sapphire
substrate. w = 40 um, h = 200 um, €% = 94, ¥ = 116, (—)
Two-plates results. (~—~-) Single-late results using and (20) and (21). (- - ~).
Single plate results [8].
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Fig. 4. Attenuation and effective dielectric constants for a microstrip line in
a layered lossy substrate. w = 30 pm, A =200 pm, ¢ = 6 pm, e, 1 = 12.9,1g
61 =3 x 1074, €, 0 =34, tg 6 = 0.05, ¢ = 1.77 x 107 (Qm)~ L. (—2)
Two-plates results. (——-) Single-plate results. (- - —) Theoretical results in
[15]. (*) Experimental results in [16].

Fig. 4 shows a comparison between our results for a mi-
crostrip line and those provided in [15]. The technique used in
[15] is full-wave mode matching. In Fig. 4 the experimental
data obtained in [16] are also shown. A good agreement is
observed for the attenuation constant for both the two- and
the single-plate models (using (20) and (21)). Once again
good results for the effective dielectric constant are only
provided by the two-plates model. The disagreement between
our results and those of [15] for the highest values of the
h/Xo ratio is believed to be due to the failure of the quasi-
TEM approach owing to full-wave effects. This disagreement
should be present even in the absence of conductor losses.

The two main limitations of the approach developed here
are the presence of full-wave effects in the lossless problem,
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t(pm)

Fig. 5. Attenuation and effective dielectric constants for a coplanar wave-
guide on a AsGa substrate. h = 200 pm, s = 5 pm, w = 40 pum, €, = 12.9.
(—) Phase constant results using a two-plates model and an N = 3, 5 and
10 improvement (17). (x o) Theoretical results in [15].

and the presence of relatively high values for the metalliza-
tion thickness. This latter limitation is expected to be more
important in coplanar lines with high lateral coupling between
the strips. In Fig. 5 our results for a coplanar waveguide are
compared with those obtained in [15] by using a full-wave

mode matching approach. Good agreement is observed for .

the attenuation constant for all the computed strip thicknesses.
The results for the effective dielectric constant show a good

agreement until values of the /s ratio of about ¢/s = 0.25.,

For higher values of this ratio, our two-plates model results
disagree. By using the improvement of the model given in (17),
a much better convergence is achieved, although the effective
dielectric constant is systematically overestimated.

One of the main advantages of the spectral domain tech-
nique is the ability to deal with multilayered and/or anisotropic
substrates. In Fig. 6 the dispersion characteristics of a MIS
line with a magnetic semiconductor layer are shown. At low
frequencies the dispersion characteristics of the structure with
ideal conductors can be obtained from a quasi-TEM approach
[2], [3]. When conductor losses are also present, the proposed
approach can be used to take into account both conductor and
substrate magnetic and ohmic losses in a unified way.

IV. CONCLUSION

The surface impedance approach has been applied to the
spectral domain quasi-TEM analysis of quasi-planar MIC and
MMIC lines on dielectric, semiconductor and/or magnetic
multilayered substrates having transverse anisotropy (i.e. the
direction of propagation coincides with a main axis of the
permittivity and permeability tensors). The proposed procedure
takes advantage of the simplicity of both the quasi-TEM
approach and the spectral domain analysis. The proposed
method of analysis remains valid in both the weak and the
strong skin effect frequency ranges.

Two surface impedance models have been used, a single-
plate model [5] and a two-plates model. The single-plate model
has shown to be useful for attenuation constant computations,
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Fig. 6. Slow wave factor (——) and attenuation constant (——-) for a
microstrip line of gold (6 = 4.094 x 107 (Qm)~') on a ferrimagnetic
semiconductor. b1 = 100 pm, he = 1 pm, w = 200 um, €1 = €3 =
15.5. Layer 1 of saturated ferrimagnetic semiconductor with ¢; = 0.003
(Qmm)~1, Ho 1 = 2500 Oe, AHg,1 = 75 Oe.(*) Results in [2] with a
lossless t = O strip.

provided that a good estimation of the ratio between the
tangential magnetic field above and below the strips is made.
The two-plates model also provides good results for the phase
constant when thick strips are present. Therefore the two-
plates model is useful in the analysis of MIC and MMIC lines
with relatively thick strips. Moreover, no additional hypothesis
on the magnetic field values at the neighbourhood of the
strips must be made when aplying the two-plates model. This
fact makes the two-plates model very useful in the analy-
sis of multiconductor lines, in which a previous estimation
of the magnetic field behavior near the strips is difficult
or impossible. The use of asymptotic tails for the Green’s
function and other analytical preprocessing [13], makes it
possible to develop computer codes capable of solving a great
variety of configurations within short computing times. Typical
computing times are within a few seconds in a 486 PC.

APPENDIX A

The surface impedance matrix appearing in (9) can be
obtained solving the diffusion equation for the longitudinal
component of the electric field inside the conductor. We
assume that the conductor width is larger than conductor
thickness, at least large enough to consider 6EZ/dz? neg-
ligible with respect to OE2/0y?. Under that assumption, the’
expression for the impedance matrix can be found in [11], [9]
and [12]

e
A;=&J=Zma@(—}%) (18)
1
Lo =21 = ln——5 - (19)
sinh(2 ;] #)

For strips made of several conducting layers, similar expres-
sions can be obtained by following the same procedure. This
makes possible to take into account the adhesive conducting
layer (Ti) used in the technology. '
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APPENDIX B

The surface impedance used to improve (11) in [5] is

1+ R, 1+
= —— ¢tgh | —
7 Zm<1__Rng < 6 )

R 1+
- A
1= R, Ctgh( 26 ))
where R,, = HJ/H_ is the ratio between the tangential

magnetic fields on the upper and lower strip interfaces.
For an open microstrip line this ratio will be approximated

by
= {1 + % tg™! (TW—E%TPH
. [1 - % g™ ((2h ft};QJr—t)(j}v/?)?):i S

where £ is the height of the substrate and w,¢ are the strip
width and thickness respectively. Equation (21) is obtained
by solving the magnetostatic problem of a uniform surface
current layer of width w located at a distance s of an infinite
ground plane. The H} /H; ratio in (21) is the ratio between
the magnetostatic field at a distance ¢ above the surface current
layer, and the magnetostatic field just below the surface current
layer. Notice that the surface impedance definition used in [8]
is obtained from (20) and (21) by making H; = 0, i.e. by
neglecting the magnetic field at the upper strip interface.

(20)

Hy
Hy
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